您好,欢迎来到试剂信息网! [登录] [免费注册]
试剂信息网
位置:首页 > 产品库 > Tomivosertib(eFT-508)
立即咨询
咨询类型:
     
*姓名:
*电话:
*单位:
Email:
*留言内容:
请详细说明您的需求。
*验证码:
 
Tomivosertib(eFT-508)
本产品不向个人销售,仅用作科学研究,不用于任何人体实验及非科研性质的动物实验。
Tomivosertib(eFT-508)图片
CAS NO:1849590-01-7
规格:≥98%
包装与价格:
包装价格(元)
1mg电议
2mg电议
5mg电议
10mg电议
25mg电议
50mg电议
100mg电议
250mg电议

产品介绍
理化性质和储存条件
Molecular Weight (MW)340.38
FormulaC17H20N6O2
CAS No.1849590-01-7
Storage-20℃ for 3 years in powder form
-80℃ for 2 years in solvent
Solubility (In vitro)DMSO: 13 mg/mL (38.2 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Other info

Chemical Name: 6'-((6-aminopyrimidin-4-yl)amino)-8'-methyl-2'H-spiro[cyclohexane-1,3'-imidazo[1,5-a]pyridine]-1',5'-dione

SMILES Code: NC1=NC=NC(NC2=CC(C)=C3N(C4(CCCCC4)NC3=O)C2=O)=C1

Exact Mass: 340.1648

SynonymsTomivosertib; eFT-508; eFT 508; eFT508
实验参考方法
In Vitro

In vitro activity: Tomivosertib (also known as eFT508) is a potent, highly selective, reversible, ATP-competitive and orally bioavailable inhibitor of MNK1 and MNK2 (Mitogen-Activated Protein Kinase Interacting Kinase) with IC50 values of 1-2 nM against both isoforms in enzyme assays. eFT508 inhibits the kinase through a reversible, ATP-competitive mechanism of action. Treatment of tumor cell lines with eFT508 led to a dose-dependent reduction in eIF4E phosphorylation at serine 209 (IC50 = 2-16 nM), consistent with previous findings that phosphorylation of this site is solely dependent upon MNK1/MNK2. In a panel of ~50 hematological cancers, eFT508 showed anti-proliferative activity against multiple DLBCL cell lines. Sensitivity to eFT508 in TMD8, OCI-Ly3 and HBL1 DLBCL cell lines was associated with dose-dependent decreases in production of pro-inflammatory cytokines including TNFα, IL-6, IL-10 and CXCL10.

Kinase Assay: Dysregulated translation of messenger RNA (mRNA) plays a role in the pathogenesis of multiple solid tumors and hematological malignancies. MNK1 and MNK2 integrate signals from several oncogenic and immune signaling pathways, including RAS, p38, and Toll-like receptor (TLR) pathways, by phosphorylating eukaryotic initiation factor 4E (eIF4E) and other key effector proteins including hnRNPA1 and PSF. Through phosphorylation of these regulatory proteins MNK1 and MNK2 selectively regulate the stability and translation of a subset of cellular mRNA. eFT508 is a potent, highly selective, and orally bioavailable MNK1 and MNK2 inhibitor. eFT508 has a half-maximal inhibitory concentration (IC50) of 1-2 nM against both MNK isoforms in enzyme assays and inhibits the kinase through a reversible, ATP-competitive mechanism of action.


Cell Assay: Treatment of tumor cell lines with eFT508 led to a dose-dependent reduction in eIF4E phosphorylation at serine 209 (IC50 = 2-16 nM), consistent with previous findings that phosphorylation of this site is solely dependent upon MNK1/MNK2. In a panel of ~50 hematological cancers, eFT508 showed anti-proliferative activity against multiple DLBCL cell lines. Sensitivity to eFT508 in TMD8, OCI-Ly3 and HBL1 DLBCL cell lines was associated with dose-dependent decreases in production of pro-inflammatory cytokines including TNFα, IL-6, IL-10 and CXCL10. Further evaluation eFT508 mechanism of action demonstrated that decreased TNFα production correlated with a 2-fold decrease in TNFα mRNA half-life. These findings are consistent with MNK1 phosphorylation of specific RNA-binding proteins, eg, hnRNPA1, that regulate the stability and translation of mRNA containing specific AU-rich elements (ARE) in their 3'-untranslated regions (UTR). Pro-inflammatory cytokines are drivers of key hallmarks of cancer including tumor cell survival, migration and invasion, angiogenesis, and immune evasion, while also driving drug resistance.

In VivoeFT508 is tested in vivo in 7 subcutaneous human lymphoma xenograft models. Significant anti-tumor activity is observed in the TMD8 and HBL-1 ABC-DLBCL models, both of which harbor activating MyD88 mutations.
Animal modeleFT508 was tested in vivo in 7 subcutaneous human lymphoma xenograft models. Significant anti-tumor activity was observed in the TMD8 and HBL-1 ABC-DLBCL models, both of which harbor activating MyD88 mutations.
Formulation & Dosage
ReferencesBlood 2015 126:1554